백준 3053번 - 택시 기하학(Java)
문제
19세기 독일 수학자 헤르만 민코프스키는 비유클리드 기하학 중 택시 기하학을 고안했다.
택시 기하학에서 두 점 T1(x1,y1), T2(x2,y2) 사이의 거리는 다음과 같이 구할 수 있다.
D(T1,T2) = |x1-x2| + |y1-y2|
두 점 사이의 거리를 제외한 나머지 정의는 유클리드 기하학에서의 정의와 같다.
따라서 택시 기하학에서 원의 정의는 유클리드 기하학에서 원의 정의와 같다.
원: 평면 상의 어떤 점에서 거리가 일정한 점들의 집합
반지름 R이 주어졌을 때, 유클리드 기하학에서 원의 넓이와, 택시 기하학에서 원의 넓이를 구하는 프로그램을 작성하시오.
입력
첫째 줄에 반지름 R이 주어진다. R은 10,000보다 작거나 같은 자연수이다.
출력
첫째 줄에는 유클리드 기하학에서 반지름이 R인 원의 넓이를, 둘째 줄에는 택시 기하학에서 반지름이 R인 원의 넓이를 출력한다. 정답과의 오차는 0.0001까지 허용한다.
풀이 과정
1. 예시를 보니 첫째는 pi*R^2의 식, 둘째는 2*r^2의 식에 값을 대입한 것과 같다.
2. 출력은 소수 여섯 째 자리까지 출력되었으므로, 출력문을 수정했다.
2. pi 값을 여섯 째 자리까지만 작성했더니 값이 다르게 나왔다. 좀 더 늘려서 입력했다.
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
double pi = 3.14159265359;
double r = scanner.nextDouble();
System.out.println(String.format("%.6f", pi*r*r));
System.out.println(String.format("%.6f", 2*r*r));
}
}
'코테 준비' 카테고리의 다른 글
백준 10872번 - 팩토리얼(Java) (0) | 2021.02.11 |
---|---|
백준 1002번 - 터렛(Java) (0) | 2021.02.10 |
백준 4153번 - 직각삼각형(Java) (0) | 2021.02.08 |
백준 3009번 - 네 번째 점(Java) (0) | 2021.02.07 |
백준 1085번 - 직사각형에서 탈출(Java) (0) | 2021.02.06 |